This list of publications includes papers from the ARIA team about data products and papers that have used ARIA data products in their analysis.


  1. Biass S., Jenkins, S., Lallemant, D., Ning, L., Willams, G., Yun, S., and Zebker, H., “Remote Sensing of Volcanic Impacts,” Chapter 12 of Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, Elsevier, Philadelphia, PA, USA, 2020.
  2. Buzzanga, B., Bekaert. D.P.S., Hamlington, B.D. & Sangha, S.S., 2020, Towards sustained monitoring of subsidence at the coast using InSAR and GPS: An application in Hampton Roads, Virginia. Geophysical Research Letters, 47,
  3. Fielding, E., Liu, Z., Stephenson, O., Zhong, M., Liang, C., Moore, A., Yun, S., Simons, M., “Surface Deformation Related to the 2019 Mw 7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR Interferometry, and SAR Pixel Offsets”, Seismological Research Letters, doi:, March 4, 2020.
  4. Ho, H., Park, E., Chitwatkulsiri, D., Lim, J., Yun, S., Maneechot, L., Phuong, D., “Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood”, Journal of Hydrology, in press.
  5. Hough, S., Yun, S., Jung, J., Thompson, E., Parker, G., Stephenson, O., “Near-field Ground Motions and Shaking from the 2019 M7.1 Ridgecrest, California, Mainshock: Insights from Instrumental, Macroseismic Intensity, and Remote-Sensing Data”, Bull. Seism. Soc. Am., doi: 10.1785/0120200045, May, 2020.
  6. Jung, J., Yun, S., “Evaluation of Coherent and Incoherent Landslide Detection Methods Based on Synthetic Aperture Radar for Rapid Response: A Case Study for the 2018 Hokkaido Landslides”, Remote Sensing, Vol 12, 265, doi:10.3390/rs12020265, Jan 2020.
  7. Latrubesse, E., Park, E., Sieh, K., Dang, T., Lin, Y., Yun, S., “Dam failure and a catastrophic flood in the Mekong basin (Bolaven plateau), Laos, 2018”, Geomorphology, doi:, April, 2020.
  8. Loos, S., Lallemant, D., Baker, J., McCaughey, J., Yun, S., Budhathoki, N., Khan, F., Singh, R., “G-DIF: A geospatial data integration framework to rapidly estimate post-earthquake damage”, Earthquake Spectra, in press.
  9. Miller, Megan M. and Cathleen E. Jones and Simran S. Sangha and David P. Bekaert, 2020, Rapid drought-induced land subsidence and its impact on the California aqueduct, Remote Sensing of Environment, 251,doi:
  10. Salman, R., Lindsey, E., Lythgoe, K., Bradley, K., Muzli, M., Yun, S., Chin, S., Tay, C., Costa., F., Wei, S., Hill, E.M., “Cascading partial rupture of the Flores thrust during the 2018 Lombok earthquake sequence, Indonesia”, Seismological Research Letters, 91 (4): 2141-2151, doi:10.1785/0220190378, May, 2020.
  11. Tay, C., Yun, S., Chin, S., Bhardwaj, A., Jung, J., Hill, E.M., “Rapid Flood and Damage Mapping Using Synthetic Aperture Radar in Response to Typhoon Hagibis, Japan”, Scientific Data, doi:, March, 2020.
  12. Ulloa, N., Chiang, S., Yun, S., “Flood Proxy Mapping with Normalized Backscattering Index and Entropy”, Remote Sensing, doi:10.3390/rs12091384, April, 2020.


  1. Bradley, K., Mallick, R., Andikagumi, H., Hubbard, J., Meilianda, E., Switzer, A., Du, N., Brocard, G., Alfian, D., Benazir, B., Feng, G., Yun, S., Majewski, J., Wei, S., Hill, E., “Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation”, Nature Geoscience,, Sep 28, 2019.
  2. Jung, J., Kim, D., Vadivel, S., Yun, S., “Long-Term Deflection Monitoring for Bridges Using X and C-Band Time-Series SAR Interferometry”, Remote Sensing, Vol 11, 1258, doi:10.3390/rs11111258, 2019.
  3. Lin, Y., Yun, S., Bhardwaj, A., Hill, E., “Urban Flood Detection with Sentinel-1 Multi-Temporal Synthetic Aperture Radar (SAR) Observations in a Bayesian Framework: A Case Study for Hurricane Matthew”, Remote Sensing, Vol 11, 1778, doi:10.3390/rs11151778, Jul 29, 2019.
  4. Ross, Z., Idini, B., Jia, Z., Stephenson, O., Zhong M., Wang, X., Zhan, Z., Simons, M., Fielding, E., Yun, S., Hauksson, E., Moore, A., Liu, Z., Jung, J., “Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence”, Science, Vol. 366, Issue 6463, pp. 346-351, DOI: 10.1126/science.aaz0109, Oct 18, 2019.


  1. Tung S., E. J. Fielding, D. P. S. Bekaert, T. Masterlark, Rapid geodetic analysis of subduction zone earthquakes leveraging a 3D elastic Green's function library. 2018, Geophys. Res. Lett., 44


  1. Argus, D.F., F.W. Landerer, D.N. Wiese, H.R. Martens, Y. Fu, J.S. Famiglietti, J. S., B.F Thomas, T.G. Farr, A.W. Moore, and M.M. Watkins (2017), Sustained water loss in California’s mountain ranges during severe drought from 2012 to 2015 inferred from GPS, J. Geophys. Res.: Solid Earth, v. 122, pl 10,559–10,585, doi: 10.1002/2017JB014424,
  2. Chan, C.-H., et al., Enhanced stress and changes to regional seismicity due to the 2015 M w 7.8 Gorkha, Nepal, earthquake on the neighbouring segments of the Main Himalayan thrust, Journal of Asian Earth Sciences 133 (2017): 46-55,
  3. Farr, T.G., C. Jones, and Z. Liu (2017), Progress report: Subsidence in California, March 2015 – September 2016, report to CA DWR, 37 pp. [report link]
  4. GEER Association, "ENGINEERING RECONNAISSANCE FOLLOWING THE AUGUST 24, 2016M6. 0 CENTRAL ITALY EARTHQUAKE." Proc. 16th World Conf. on Earthquake Eng, 2017. [link]
  5. Huang, M.-H., E. Fielding, C. Liang, P. Milillo, D. Bekaert, D. Dreger, and J. Salzer (2017), Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy, 2017. Geophys. Res. Lett., 44, doi:10.1002/2016GL071687,
  6. Sharma, R. C., et al., Earthquake damage visualization (EDV) technique for the rapid detection of earthquake-induced damages using SAR data, Sensors 17.2 (2017): 235,


  1. Castaldo, R., et al., Finite element modelling of the 2015 Gorkha earthquake through the joint exploitation of DInSAR measurements and geologic-structural information, Tectonophysics (2016),
  2. Galetzka, J., D. Melgar, J. F. Genrich, J. Geng, S. Owen, E. O. Lindsey, X. Xu et al, Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal, Science 349, no. 6252 (2015): 1091-1095,
  3. Liu, Y., L. Ge, and A. H. Ng, Source Model from ALOS-2 ScanSAR of the 2015 Nepal Earthquakes, Journal of Applied Geodesy 10.2 (2016): 109-118,
  4. Luo, Haipeng, and T. Chen, Three-Dimensional Surface Displacement Field Associated with the 25 April 2015 Gorkha, Nepal, Earthquake: Solution from Integrated InSAR and GPS Measurements with an Extended SISTEM Approach, Remote Sensing 8.7 (2016): 559,
  5. Milillo, P., B. Riel, B. Minchew, S-H. Yun, M. Simons, and P. Lundgren (2016), On the Synergistic Use of SAR Constellations' Data Exploitation for Earth Science and Natural Hazard Response, IEEE J. of Sel. Top. in Ap. Earth Obs. and Rem. Sens., 9, 1095-1100, doi:10.1109/JSTARS.2015.2465166,
  6. Rousset, B., R. Jolivet, M. Simons, C. Lasserre, B. Riel, P. Milillo, Z. Çakir, and F. Renard (2016), An aseismic slip transient on the North Anatolian Fault, Geophys. Res. Lett., 43, doi: 10.1002/2016GL068250,
  7. Tung, S., and T. Masterlark, Coseismic slip distribution of the 2015 Mw7. 8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3‐D heterogeneous Domain, Journal of Geophysical Research: Solid Earth 121.5 (2016): 3479-3503,
  8. Yue, H., M. Simons, z. Duputel, J. Jiang, E. Fielding, C. Liang, S. Owen, A. Moore, B. Riel, J-P. Ampuero, S.V. Samsonov (2016), Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake, Tectonophysics, doi:10.1016/j.tecto.2016.07.005,


  1. Angster, S., E. J. Fielding, S. Wesnousky, I. Pierce, D. Chamlagain, D. Gautam, B. N. Upreti, Y. Kumahara, and T. Nakata (2015), Field Reconnaissance after the 25 April 2015 M 7.8 Gorkha Earthquake: Seismological Research Letters, v. 86, no. 6, p. 1506-1513. doi:10.1785/0220150135,
  2. Barnhart, W. D., J. R. Murray, S. H. Yun, J. L. Svarc, S. V. Samsonov, E. J. Fielding, B. A. Brooks, and P. Milillo (2015), Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake, Seismol. Res. Lett., 86(2A), 335-343, doi:10.1785/0220140210,
  3. Duputel, Z., J. Jiang, R. Jolivet, M. Simons, L. Rivera, J.‐P. Ampuero, B. Riel, S. E. Owen, A. W. Moore, S. V. Samsonov, F. Ortega Culaciati, S. E. Minson (2014), The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty, Geophys. Res. Lett., doi: 10.1002/2015GL065402,
  4. Feng, G., Z. Li, X. Shan, L. Zhang, G. Zhang, and J. Zhu, Geodetic model of the 2015 April 25 M w 7.8 Gorkha Nepal Earthquake and M w 7.3 aftershock estimated from InSAR and GPS data, Geophysical journal international 203, no. 2 (2015): 896-900,
  5. Ge, L., et al. Near real-time satellite mapping of the 2015 Gorkha earthquake, Nepal. Annals of GIS 21.3 (2015): 175-190,
  6. Riel, B., P. Milillo, M. Simons,P. Lundgren, H. Kanamori, and S. Samsonov (2015), The collapse of Bárdarbunga caldera, Iceland, Geophys. J. Int., 202, 446-453, doi:10.1093/gji/ggv157,
  7. Wang, W., et al., Rupture process of the Mw7. 9 Nepal earthquake April 25, 2015, Science China Earth Sciences 58.10 (2015): 1895-1900,
  8. Yun, S-H., K. Hudnut, S. Owen, F. Webb, M. Simons, P. Sacco, E. Gurrola, G. Manipon, C. Liang, E. Fielding, P. Milillo, H. Hua, A. Coletta (2015), Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO-SkyMed and ALOS-2 Satellites, Seismol. Res. Lett., 80, 6, 1549-1556, 2015, doi:10.1785/0220150152,
  9. Zhang, G., E. Hetland, and X. Shan. Slip in the 2015 M w 7.9 Gorkha and M w 7.3 Kodari, Nepal, earthquakes revealed by seismic and geodetic data: Delayed slip in the Gorkha and slip deficit between the two earthquakes. Seismological Research Letters 86.6 (2015): 1578-1586,


  1. Avouac, J-P., FrancoisAyoub, S. Wei, J-P. Ampuero, L. Menga, S. Leprince, R. Jolivet, Z. Duputel, and D. Helmberger (2014), The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault, Bull. Seismol. Soc. Am., doi:10.1016/j.epsl.2014.01.036,
  2. Barnhart, W. D., J. R. Murray, S-H. Yun, J. L. Svarc, S. V. Samsonov, E. J. Fielding, B. A. Brooks, and P. Milillo (2014), Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake, Seismol. Res. Lett., 86(2A), 335-343, doi:10.1785/0220140210,
  3. Fielding, E. J., M. Simons, S. Owen, P. Lundgren, H. Hua, P. Agram, Z. Liu, A. Moore, P. Milillo, J. Polet, S. Samsonov, P. Rosen, F. Webb, G. and Milillo (2014), Rapid Imaging of Earthquake Ruptures with Combined Geodetic and Seismic Analysis: Procedia Technology, v. 16, p. 876-885. doi:10.1016/j.protcy.2014.10.038,
  4. Jolivet R., M. Simons, P. S. Agram, Z. Duputel, and Z.‐K. Shen (2014), Aseismic slip and seismogenic coupling along the central San Andreas Fault, Geophys. Res. Lett., 42, doi: 10.1002/2014GL062222,
  5. Jolivet R., et. al., The 2013 Mw 7.7 Balochistan earthquake: Seismic potential of an accretionary wedge, Bull. Seismol. Soc. Am., doi:10.1785/0120130313, 2014,
  6. Minson, S. E., M. Simons, J. L. Beck, F. Ortega, J. Jiang, S. E. Owen, A. W. Moore, A. Inbal, and A. Sladen, Bayesian inversion for finite fault earthquake source models–II: the 2011 great Tohoku-oki, Japan earthquake, Geophysical Journal International 198, no. 2 (2014): 922-940,
  7. Protti, M., V. González, A. V. Newman, T. H. Dixon, S. Y. Schwartz, J. S. Marshall, L. Feng, J. I. Walter, R. Malservisi, and S. E. Owen. "Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface." Nature Geoscience 7, no. 2 (2014): 117-121,


  1. Fielding, E. J., Lundgren, P. R., Taymaz, T., Yolsal‐Çevikbilen, S., & Owen, S. E., Fault‐Slip Source Models for the 2011 M 7.1 Van Earthquake in Turkey from SAR Interferometry, Pixel Offset Tracking, GPS, and Seismic Waveform Analysis. Seismological Research Letters, 84(4), 579-593, 2013,
  2. Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., & Sun, Q. (2013), Derivation of 3-D coseismic surface displacement fields for the 2011 Mw 9.0 Tohoku-Oki earthquake from InSAR and GPS measurements, Geophysical Journal International, 192(2), 573-585,
  3. Kyriakopoulos, C., Masterlark, T., Stramondo, S., Chini, M., & Bignami, C. (2013), Coseismic slip distribution for the Mw 9 2011 Tohoku‐Oki earthquake derived from 3‐D FE modeling, Journal of Geophysical Research: Solid Earth, 118(7), 3837-3847,
  4. Li, X., Ge, M., Zhang, Y., Wang, R., Xu, P., Wickert, J., & Schuh, H. (2013), New approach for earthquake/tsunami monitoring using dense GPS networks, Scientific reports, 3,
  5. Lin, Y. N., A. Sladen, F. Ortega‐Culaciati, M. Simons, J‐P. Avouac, E. J. Fielding, B. A. Brooks, M. Bevis, J. Genrich, and A. Rietbrock (2013), Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect, J. Geophys. Res., 118, doi:10.1002/jgrb.50207,
  6. Wang, R., Parolai, S., Ge, M., Jin, M., Walter, T. R., & Zschau, J. (2013), The 2011 Mw 9.0 Tohoku Earthquake: Comparison of GPS and Strong‐Motion Data, Bulletin of the Seismological Society of America, 103(2B), 1336-1347,
  7. Wei, S., Helmberger, D., Owen, S., Graves, R. W., Hudnut, K. W., & Fielding, E. J., Complementary slip distributions of the largest earthquakes in the 2012 Brawley swarm, Imperial Valley, California, Geophys. Res. Lett., Vol. 40, 5, pp 847-852, 2013,
  8. Yue, H., Lay, T., Schwartz, S., Rivera, L., Protti, M., Dixon, T., Owen, S. The 5 September 2012 Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties, Journal of Geophysical Research: Solid Earth, revisions submitted, 2013,
  9. Yue, H., & Lay, T. (2013), Source Rupture Models for the Mw 9.0 2011 Tohoku Earthquake from Joint Inversions of High‐Rate Geodetic and Seismic Data, Bulletin of the Seismological Society of America, 103(2B), 1242-1255,


  1. Evans, E. L., & Meade, B. J. (2012), Geodetic imaging of coseismic slip and postseismic afterslip: Sparsity promoting methods applied to the great Tohoku earthquake, Geophysical Research Letters, 39(11), L11314,
  2. Feng, G., & Jónsson, S. (2012), Shortcomings of InSAR for studying megathrust earthquakes: The case of the Mw9. 0 Tohoku-Oki earthquake, Geophysical Research Letters, 39(10), L10305,
  3. Grilli, S. T., Harris, J. C., Tajalli Bakhsh, T. S., Masterlark, T. L., Kyriakopoulos, C., Kirby, J. T., & Shi, F. (2012), Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far-and near-field observations, Pure and Applied Geophysics, 1-27,
  4. Gusman, A. R., Tanioka, Y., Sakai, S., & Tsushima, H. (2012), Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data, Earth and Planetary Science Letters, 341, 234-242,
  5. Song, Y. T., Fukumori, I., Shum, C. K., & Yi, Y. (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophysical Research Letters, 39(5), L05606,
  6. Wang, Y. B., Jin, H. L., Fu, G. Y., & Meng, G. J., (2012), Estimation of Co-Seismic Slip Distribution of the 2011 Tohoku-Oki MW9. 0 Earthquake Using Yabuki & Matsu’ura’s Inverse Method, Chinese Journal of Geophysics, 55(4), 418-428,
  7. Zhang, Y., Xu, L., & Chen, Y. T. (2012), Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data, Earthquake Science, 25(2), 129-135,
  8. Zhou, X., Sun, W., Zhao, B., Fu, G., Dong, J., & Nie, Z. (2012), Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw= 9.0 Tohoku-Oki earthquake, Journal of Geophysical Research, 117(B5), B05408,


  1. Ammon, C. J., Lay, T., Kanamori, H., & Cleveland, M. (2011), A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets and Space, 63(7), 693,
  2. Chang, E., and B. Chao, (2011), Co-seismic Surface Deformation of the 2011 off the Pacific Coast of Tohoku Earthquake: Spatio-Temporal EOF Analysis of GPS Data, Earth Planets Space, 63, 0-0,
  3. Diao F. Q., Xiong X., Ni S. D., et al., (2011), Slip model for the 2011 Mw 9.0 Sendai (Japan) earthquake and its Mw 7.9 aftershock derived from GPS data, Chinese Sci Bull, 56: 2941−2947, doi:10.1007/s11434-011-4643-4,
  4. Feng, G., X-L Ding, Z-W Li, J Mi, L. Zhang, M. Omura, (2012), Calibration of an InSAR-Derived Coseismic Deformation Map with the 2011 Mw 9.0 Tohoku-Oki Earthquake, Geoscience and Remote Sensing Letters, IEEE, Vol. 9, Issue 2,
  5. Grapenthin, R., and J. T. Freymueller (2011), The dynamics of a seismic wave field: Animation and analysis of kinematic GPS data recorded during the 2011 Tohoku-oki earthquake, Japan, Geophys. Res. Lett., 38, L18308, doi:10.1029/2011GL048405,
  6. Hao, J., Wang, W., & Yao, Z. (2011), Source process of the 2011 M w 9.0 Tohuko Japan earthquake, SCIENCE CHINA Earth Sciences, 54(8), 1105-1109,
  7. Ito, T., K. Ozawa, T. Watanabe and T. Sagiya, (2011), Slip distribution of the 2011 Tohoku earthquake inferred from geodetic data, Earth Planets Space, 63, 0-0,
  8. Koper, K., A Hutko, T. Lay, C. Ammon, and H. Kanamori, (2011), Frequency-dependent rupture process of the 11 March 2011 MW 9.0 Tohoku earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Planets Space, 58, 1-4,
  9. Lay, T., C. Ammon, H. Kanamori, M. Kim, L. Xue, (2011), Outer trench-slope faulting and the great 2011 Tohoku (Mw9.0) earthquake, Earth Planets Space, 63, 0-0,
  10. Lay, T., Ammon, C. J., Kanamori, H., Xue, L., & Kim, M. J. (2011), Possible large near-trench slip during the 2011 M (w) 9. 0 off the Pacific coast of Tohoku Earthquake, Earth, Planets and Space, 63(7), 687-692,
  11. Lee, S.-J., B.-S. Huang, M. Ando, H.-C. Chiu, and J.-H. Wang (2011), Evidence of large scale repeating slip during the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L19306, doi:10.1029/2011GL049580,
  12. Miyazaki, S., J. McGuire, P. Segall, (2011), Seismic and aseismic fault slip before and during the 2011 Tohoku Earthquake, Earth Planets Space, 63, 0-0,
  13. Pollitz, F. F., R. Bürgmann, and P. Banerjee (2011), Geodetic slip model of the 2011 M9.0 Tohoku earthquake, Geophys. Res. Lett., 38, L00G08, doi:10.1029/2011GL048632,
  14. Shao, G., Li, X., Chen, J., Maeda, T., (2011), Focal mechanism and slip history of 2011 M9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves, Earth Planets Space, 63,
  15. Shao, G., C. Ji, and D. Zhao (2011), Rupture process of the 9 March, 2011 Mw 7.4 Sanriku-Oki, Japan earthquake constrained by jointly inverting teleseismic waveforms, strong motion data and GPS observations, Geophys. Res. Lett., 38, L00G20, doi:10.1029/2011GL049164,
  16. Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J-P., Wei, S., Chu, R., Helmberger, D., Kanamori, H., Hetland, E., Moore, A., Webb, F. H., The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries, Science, 332 (6036), 1421-1425, 2011,
  17. Wang, C., Ding, X., Shan, X., Zhang, L., & Jiang, M. (2012), Slip distribution of the 2011 Tohoku earthquake derived from joint inversion of GPS, InSAR and seafloor GPS/acoustic measurements, Journal of Asian Earth Sciences,
  18. Wang F., Shen Z. K., Wang Y. Z., et al., (2011), Influence of the March 11, 2011 Mw 9.0 Tohoku-oki earthquake on regional volcanic activities, Chinese Sci Bull, 56: 2077-2081, doi:10.1007/s11434-011-4523-y,
  19. Wang M., Li Q., Wang F., et al., (2011), Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System, Chinese Sci Bull, 56: 2419−2424, doi:10.1007/s11434-011-4588-7,
  20. Wei, S., E.J. Fielding, S. Leprince, A. Sladen, J-P. Avouac, D.V. Helmberger, E. Hauksson, R. Chu, M. Simons, K.W. Hudnut, T. Herring, and R.W. Briggs (2011), Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico, Nature Geoscience, 4, 615-618, doi:10.1038/ngeo1213,


  1. Hayes, G. P., R.W. Briggs, A. Sladen, E.J. Fielding, C. Prentice, K. Hudnut, P. Mann, F.W. Taylor, A.J, Crone, R. Gold, T. Ito, and M. Simons (2010). Complex rupture during the 12 January 2010 Haiti earthquake, Nature Geoscience, 3, 800-805, doi:10.1038/ngeo977,